skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Bachmann, Aidan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract When compressed, certain lattices undergo phase transitions that may allow nuclei to gain sig- nificant kinetic energy. To explore the dynamics of this phenomenon, we develop a methodology to study Coulomb coupled N-body systems constrained to a sphere, as in the Thomson problem. We initialize N total Boron nuclei as point particles on the surface of the sphere, allowing them to equilibrate via Coulomb scattering with a viscous damping term. To simulate a phase transition, we remove Nrm particles, forcing the system to rearrange into a new equilibrium. With this model, we consider the Thomson problem as a dynamical system, providing a framework to explore how non-zero temperature affects structural imperfections in Thomson minima. We develop a scaling relation for the average peak kinetic energy attained by a single particle as a function of N and Nrm. For certain values of N , we find an order of magnitude energy gain when increasing Nrm from 1 to 6. The model may help to design a lattice that maximizes the energy output. 
    more » « less